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High-order level-spacing distributions for mixed systems
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~Received 4 June 1999; revised manuscript received 2 June 2000!

We apply some of the methods that have been successfully used to describe the nearest-neighbor-spacing
distributions of levels of systems with mixed regular-chaotic dynamics to the calculation of high-order spacing
distributions. The distributions for chaotic spectra are described in terms of a previously suggested generali-
zation of Wigner’s surmise, which assumes that the high-order level repulsion function is given by a product
of the zero-order ones and that all of the spacing distributions are nearly Gaussian functions at large spacings.
We compare the expressions obtained by the different methods for the next-nearest-neighbor spacing distribu-
tion with the outcome of a recently published numerical experiment on systems in transition between order and
chaos. We show that the evolution of the shape of that distribution during the transition of the system from a
chaotic to a regular regime is slower than the corresponding transition for the nearest-neighbor spacing
distribution.
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I. INTRODUCTION

The random matrix theory@1,2# is a natural framework for
describing the levels of quantum systems whose class
counterparts have chaotic dynamics. The theory suggests
the spacing distribution of levels of a chaotic system ha
universal character that depends only on the symmetry p
erties of the system when the spectrum is renormalized
make the mean spacing equal to 1. For example, the nea
neighbor-spacing~NNS! distribution of the levels of a cha
otic system behaves at small spacing asP(s)}s when the
system is represented by a Gaussian orthogonal ense
~GOE!. Because in these cases the Hamiltonian matrix
ments are assumed to have a Gaussian distribution, one
pects the large-s behavior of the NNS distribution to be als
given by a Gaussian function. The two asymptotic conditio
are satisfied by the so-called Wigner surmise,

PW~s!5
p

2
se2ps2/4. ~1!

On the other hand, the NNS distribution for regular syste
is in most cases given by a Poisson distribution:

PR~s!5e2s. ~2!

Systems whose classical dynamics is intermediate betw
regularity and chaos have also been considered. Robnik@3#
was probably the first to show a continuous transition in
deformed billiard from the Poisson to the Wigner distrib
tion. Several expressions that interpolate between the
distributions have been proposed@4–12#. Some of them will
be discussed below.

In a previous paper@13#, we considered thenth-order
spacing distributionp(n,s) defined as the probability densit
that the distances between two levels contains exactlyn
levels. In this notation,P(s)5p(0,s). We applied a statisti-
cal approach suggested by Engelet al. @14# as a generaliza
tion of a well-known work by Wigner@15#, which expresses
the distributionsp(n,s) in terms of thenth-order level-
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repulsion functionr (n,s). They obtained a generalization o
Brody’s formula for the level spacing distribution of mixe
systems by takingr (n,s)}sqn, and takingqn as a free pa-
rameter. For a GOE, wherer (0,s)}s, this approach yields
Wigner’s formula for the NNS distribution. In Ref.@13#, we
apply this approach to evaluate thenth-order spacing distri-
butionsp(n,s) at small spacings by assuming that

r ~n,s!}@r ~0,s!#n11. ~3!

The large-spacing dependence of the distributions is assu
to be dominated by Gaussian functions. The overall dep
dence ons of the distributions obtained by combining th
two limits is found to agree with the exact results obtained
Mehta’s book @1# for the gap functionsE(n,s) when n
50 – 7. In particular, the expressions obtained for the ne
nearest-neighbor-spacing~NNNS! and the second-neares
neighbor-spacing~second-NNS! distributions are@13#

pW~1,s!5A1s4e2B1s2
, A152B1

3, B1516/~9p!, ~4!

and

pW~2,s!5A2s8e2B2s2
, A25B2

5/4,
~5!

B25214/~725232p!.

To see this, we expand expression~4! for pW(1,s) in powers
of s and keep the leading two terms to obtainpW(1,s)
50.362 41s4– 0.205 08s61¯ , which agrees reasonabl
well with the power-series expansion pW(1,s)
50.360 77s4– 0.230 47s61¯ obtained in@1#. Similarly, the
leading term in the power-series expansion of expression~5!
for pW(2,s), 5.920831023s8, is consistent with the value
5.379031023s8 obtained in@1# for the corresponding term

The purpose of the present paper is to find expressions
the nth-order spacing distributions for mixed systems th
interpolate between the corresponding distributions for
regular systems, which have Poissonian forms,
4792 ©2000 The American Physical Society
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pP~n,s!5
sn

n!
e2s, ~6!

and for the chaotic systems that are described by a G
which are obtained in Ref.@13#. In Sec. II, we apply assump
tion ~3! to the generalization of Brody’s formula proposed
the work of Engelet al. @14#. Section III considers the cas
in which the spectrum can be described as a random su
position of a number of level sequences. We obtain exp
expressions for the NNNS distribution when the constitut
sequences have equal densities and satisfy the GOE s
tics. This is the case for a chaotic system in which a symm
try is unknown or ignored. We demonstrate the gradual tr
sition of the shapes of these distributions towards
Poissonian shape as the number of constituting seque
increases. This formalism is used in Sec. IV to obtain a g
eralization of the Berry-Robnik formula for the high-ord
level spacing distributions of mixed systems. The summ
and conclusion of the present work are given in Sec. V.

II. THE STATISTICAL METHOD

Wigner @15# derived an interesting formula for the NN
distribution using simple statistical arguments. The only
put is the level-repulsion functionr (s), defined as the con
ditional probability that, given a level at energyE, there is
one level in the intervaldsat a distances provided that there
are no levels in the interval@E,E1s#. In terms of this func-
tion, the NNS distributionP(s) has been expressed as

P~s!5r ~s!expF2E
0

s

r ~x!dxG . ~7!

The Wigner distribution~1! is obtained from Eq.~7! by sub-
stituting r (s)}s and the Poisson distribution~2! by setting
r (s)51. Brody @4# interpolates between the Wigner an
Poisson distributions by takingr (s)}sq, where 0,q,1. He
then uses Eq.~7! to obtain

pB~0,s!5asq exp~2bsq11!, a5~q11!b,

b5$G@~q12!/~q11!#%q11, ~8!

whereG@x# is the gamma function. Brody’s formula~8! has
been very successful in reproducing the NNS distributio
for various systems with mixed regular-chaotic dynami
Theoretical arguments explaining the fractional power-l
level repulsion are given by Prosen and Robnik@10#. The
free parameterq serves as a purely phenomenological m
sure for the degree of mixing between Poisson and G
statistics. Engelet al. @14# pursued an analogous statistic
approach to determine the level-spacing distributions of
nth neighbors for mixed systems. Their derivation is bas
on defining r (n,s)ds as the conditional probability that
new @(n11)th# level occurs in an intervalds at a distances
from an arbitrarily chosen level provided that this distan
contains exactlyn levels. They obtained
E,
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p~n,s!5r ~n,s!exp@2R~n,s!#

3E
0

s

p~n21,x!exp@R~n,x!#dx for n>1,

~9!

whereR(n,s)5*0
sr (n,x)dx. They applied Eq.~9! to obtain

a Brody-like formula forp(n,s) by proposing a power-law
ansatz for thenth-order level-repulsion function:

r ~n,s!}sqn, ~10!

and consideringqn as a free parameter for each value ofn.
We shall now assume that thenth-order level-repulsion

function is related to the zeroth-order level-repulsion fun
tion by means of the ansatz~3!. Therefore, we shall not con
sider the exponentsqn as free parameters as done in@14#, but
shall consider them to be related by

qn5~n11!q, ~11!

whereq(5q0) is the parameter used in Eq.~8! to define the
degree of chaoticity of the system. We then obtain the f
lowing generalization of Brody’s formula:

p~n,s!5ans~n11!q exp~2bns~n11!q11!

3E
0

s

p~n21,x!exp~bnx~n11!q11!dx, ~12!

for n>1. Herean5@(n11)q11#bn in order to have a unit
mean spacing, andbn is defined by the normalization cond
tion *0

`p(n,s)ds51.
We shall now use the results of the numerical experim

by Engelet al. @14# on the hydrogen atom in a magnetic fie
and the He´non-Heiles potential to test the ansatz~3!.
They applied Eq.~9! to the spacing distributions withn
50,1, . . . ,7 forboth systems, takingqn as a fitting param-
eter as we have mentioned above. We use Eq.~11! to calcu-
late the chaoticity parameterq that corresponds to each of th
eight values ofqn deduced in@14# for each state of the con
sidered systems. We then find the mean valueq̄ and standard
deviationsq , which correspond to each state. The results
calculation are given in Table I. In Fig. 1, we plot the rat
qn /(n11) againstn for values ofqn reported by Engelet al.
for the hydrogen atom and He´non-Heiles potential at differ-
ent effective energies«. The figure indicate that the best-fi
values ofqn agree with Eq.~11!, especially for the less cha
otic systems. Table I shows that the ratio of the stand
deviations of the values ofqn to the corresponding mea
values for the systems under consideration are in the ra
from 16% to 1%, with a mean value of 7%. If we accept th

TABLE I. Mean valuesq̄ and standard deviationssq of the
chaoticity corresponding to the best-fit parameters ofnth-order
spacing distributions@14#.

System Hydrogen atom He´non-Heiles potential

e 20.10 20.35 0.166 0.133 0.108
q̄ 0.77 0.22 0.55 0.27 0.091
sq 0.09 0.002 0.09 0.01 0.009
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ratio as an estimate for the agreement between the prop
power law and the analysis done by Engelet al., we expect
Eq. ~12! to reproduce experimental high-order spacing dis
butions with a comparable accuracy. This accuracy is rea
able as long as the data are presented in the form of h
grams. The agreement between the empirical values oqn
and Eq.~11! is, in our point of view, a further justification
for the conclusion found in@13# that the degree of leve
repulsion is the major factor determining the spacing dis
butions of sufficiently high order (n;7) and thus defines th
correlation between the levels at distances several times
ceeding the mean level spacing.

A generalization of the Brody formula for the NNNS di
tribution can be derived by substituting Eq.~8! for pB(0,s)
into Eq. ~12! to obtain

pB~1,s!5aa1E
0

s

s2qxq exp@2bxq11

2b1~s2q112x2q11!#dx. ~13!

The parametera1 is now equal to (2q11)b1 , while b1(q) is
obtained numerically from the normalization condition. W
can have an exact result only in the case of a regular sys
where b1(0)51. In order to simplify the comparison with
numerical experiments, we calculated the values ofb1 for
different choices ofq and parametrized the result in the for

b1~q!5
1

112.7q13.5q2 . ~14!

Figure 2 demonstrates the behavior of the NNS and NN
distributions for a system in a transition from regularity
chaos. We see from the figure that, while the two distrib
tions show a smooth transition, the speed of evolution
different ranges ofq is not the same. The modification intro
duced in the shape of the NNNS distribution by varyingq
from 0 to 0.33 is less than the corresponding modification
the NNS distribution, while both distributions ultimate
reach the Poisson limit asq50. This finding suggests tha
using the distributions~9! and ~13! in a simultaneous analy

FIG. 1. The ratios of the best-fit parametersqn of the nth-order
spacing distributions obtained in@14# to the corresponding values o
(n11), shown as experimental points, compared to the mean
uesq̄ indicated by the horizontal lines.
ed
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sis of the NNS and NNNS distributions can lead to an ac
rate determination of the power-repulsion exponentq.

III. SUPERPOSITION OF INDEPENDENT SPECTRA

This section considers the case of a composite spect
resulting from a random superposition ofN uncorrelated se-
quences of energy levels. This is the case when the sys
has a set of good quantum numbers such as spin and pa
which are not considered in the analysis of level statistics
such a system, the Hamiltonian assumes block-diago
form, and the total spectrum consists of a mixture of con
butions from the individual subblocks@2#. The calculation of
the NNS distribution of such a mixed spectrum is describ
as follows in Mehta’s book@1#. Let r i be the level density in
the i th sequence andPi(xi) be the NNS distribution for this
sequence, withxi5 f is and f i5r i /(r i . The probability
Ei(xi) that there is no level belonging to thei th sequence in
a given interval of lengthxi is related to the correspondin
NNS distribution by

Ei~xi !5E
xi

`

Fi~x!dx5E
xi

`

dxE
x

`

Pi~y!. ~15!

Then the probability that a given interval of lengths does not
contain any of the levels of the mixed sequence is given

l-

FIG. 2. NNS and NNNS distributions for mixed system
calculated using Brody’s method for different level-repulsi
exponentsq.
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E~s!5)
i 51

N

Ei~xi !. ~16!

Differentiating Eq.~16! twice, one obtains

P~s!5E~s!H (
i 51

N

f i
2 Pi~ f is!

Ei~ f is!
1F(

i 51

N

f i

Fi~ f is!

Ei~ f is!G2

2(
i 51

N F f i

Fi~ f is!

Ei~ f is!G
2J . ~17!

In order to obtain a similar expression for thenth-order
spacing distribution, we consider the functionE(n,s) de-
fined as the probability that an interval of lengths of the
spectrum contains exactlyn levels. Because the individua
sequences are assumed to be independent, the proba
that a given intervals containsn levels of the mixed se-
quences is given by@16#

E~n,s!5 (
n1 ,...,nN50

n

dn11¯1nN ,n )
i 51

N

Ei~ni ,xi !. ~18!
e

e
h

t-

ys
o

on
a

sit
ility

We can check the validity of this relation considering t
case when each of the individual sequences has a Poi
distribution~for each of the three functionsE, F, andp! and
showing that the resultant mixed system also has a Pois
distribution @16,17#. This function is related to the probabi
ity F(n,s) that there are exactlyn levels within a distances
from an arbitrary chosen level by@1#

2
dE~n,s!

ds
5F~n,s!2F~n21,s!. ~19!

The latter is related to thenth-order level spacing distribu
tion p(n,s) by

2
dF~n,s!

ds
5p~n,s!2p~n21,s!. ~20!

Differentiating Eq.~18! twice, and using Eqs.~19! and~20!,
we finally obtain
d2E~n,s!

ds2 5 (
n1 ,...,nN50

n

dn11¯1nN ,nH (
i 51

N

f i
2 pi~ni , f is!1pi~ni22,f is!22pi~ni21,f is!

Ei~ni , f is!

1F(
i 51

N

f i

Fi~ni , f is!2Fi~ni21,f is!

Ei~ni , f is! G2

2(
i 51

N F f i

Fi~ni , f is!2Fi~ni21,f is!

Ei~ni , f is! G2J )
i 51

N

Ei~ni , f is!. ~21!
This equation is valid forn>2 but can be applied for the
lower values if one definesp( j ,s)5F( j ,s)50 for j ,0. The
nth-order level spacing distribution can now be obtain
from Eq. ~21! by using the following relation:

p~n,s!5(
j 50

n

~n2 j 11!
d2E~ j ,s!

ds2 , ~22!

which can easily be obtained by combining Eqs.~19! and
~20!.

An interesting special case of spectrum partition is wh
all the constituting sequences have GOE statistics. Suc
situation occurs in a chaotic system when a symmetry
unknown or ignored@18#. In this case, each of the constitu
ing sequences corresponds to a single eigenvalue~or set of
eigenvalues! corresponding to the quantum number~s! of the
unconsidered symmetry. A similar situation occurs in s
tems whose degrees of freedom can be divided into two n
interacting groups, one having chaotic dynamics and
regular@18#. This model has been able to reproduce the sp
ing distribution of low-lying levels of vibrational nuclei@19#.
If all the N chaotic sequences have the same level den
then each sequence will havef i51/N and pi(n,s)
5pW(n,s) given by Eqs.~4! and ~5!. In this case, Eq.~17!
yields for the NNS distribution@18#
d

n
a

is

-
n-
e

c-

y,

pN~0,s!5
1

N FerfcSAps

2N D GN

Q~s!F ps

2N
1~N21!Q~s!G ,

~23!

where

Q~s!5
e2ps2/4N2

erfcS Aps

2N
D . ~24!

Similarly, we use Eqs.~21! and~22! to obtain the following
expression for the NNNS distribution:

pN~1,s!5
1

N FerfcSAps

2N D GNF2a6s4

N4 R~s!1~N21!Q~s!

3$U1~s!1U2~s!%G , ~25!

where

U1~s!5F ~N22!Q~s!1
ps

2NG
3F S a2s2

2N2 12DR~s!2
s

N
T~s!22G ,
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U2~s!52Fa2s

N S a2s2

N2 1
3

2DR~s!1T~s!2Q~s!G , ~26!

R~s!5
e2a2s2/N2

erfcS Aps

2N
D , T~s!5

erfc~as/N!

erfcS Aps

2N
D ,

anda54/3Ap. A similar though more complicated expre
sion has been obtained for the second-NNS distribution.

Figure 3 shows the NNS and NNNS distributions calc
lated by means of Eqs.~23! and~25! for spectra consisting o
N sequences, withN51, 2, 4, and`. The latter two are
evidently Poissonians. Although both the NNS and NNN
distributions ultimately reach the Poisson limit, the evoluti
of the NNNS distribution from the Wigner-type that chara
terizes the cases ofN51 is slower. This evolution is even
smaller for the second-NNS distributionspN(2,s). This re-
sult together with the conclusion of the preceding sect
~Fig. 2! suggests that higher-order spacing distributions
more sensitive to the variation of the strength of perturbat
in a nearly regular system than the NNS distribution, and
less sensitive in the end of the order-chaos transition.

IV. THE BERRY-ROBNIK METHOD

Berry and Robnik@5# proposed a semiclassical method f
calculating the NNS distribution for systems with dynam

FIG. 3. NNS and NNNS distributions for spectra composed
random superpositions ofN independent sequences.
-

n
e
n
is

in the classical phase space where regular and irregula
gions coexist on the energy surface. The method rests on
principle of uniform semiclassical condensation@20,16#,
which implies the semiclassical localization of the eige
functions either in the classical regular or classical irregu
regions. The sequences of levels associated with these
gions are assumed to be statistically independent, and
fraction densitiesf i are determined by the invariant measu
of the corresponding regions in classical phase space.
NNS distribution is then given by Eq.~17!. The simplest and
most important case occurs when the levels can be divi
into two sequences, one for the regular motion and one
the chaotic with fractional level densitiesf r and f c51
2 f r , respectively. In this case, the gap function takes
following simple form:

E~0,s!5e2 f rs erfcSAp

2
f csD . ~27!

For the NNS distribution, Eq.~17! yields the following for-
mula @5#:

pBR~0,s!5 f r
2e2 f rs erfcSAp

2
f csD

1S 2 f r f c1
p

2
f c

3sDe2 f rs2p f c
2s2/4, ~28!

which works well for systems in the deep semiclassical
gime @10#.

High-order gap functions have recently been conside
by Prosen and Robnik@17#. They calculated theE(n,s) sta-
tistics with different values ofn being as large as 100 fo
three two-dimensional systems, namely the compacti
standard map@10# with kick parameters equal to 1.8 an
0.04, and for a quartic billiard@21#. The result of the numeri-
cal calculation agrees very well, particularly forn<20, with
the theoretical calculation based on the principle of unifo
semiclassical condensation, which yields in this case
equation of the type~18!. Prosen and Robnik@17# applied a
Poisson distribution forEregular(n,s) for the regular compo-
nents of the spectra. For the chaotic components, they u
the numerical values given in Mehta’s book@1# for
Echaotic(n,s) when n<7 and the asymptotic formula sug
gested by Aurichet al. @22#. This agreement can be regarde
as a confirmation of the Berry-Robnik picture for theE(n,s)
statistics.

For the NNNS distribution, we propose a generalizati
of the Berry-Robnik expression by our generalization of t
Wigner surmise@13#, which agrees perfectly well with Me
hta’s table forE(n,s). We substitute Eqs.~1!, ~4!, and ~6!
into Eqs.~21! and ~22! to obtain

pBR~1,s!5~22 f rs!F f r f c erfc~a f cs!2 f r
2 erfcSAp

2
f csD G

3e2 f rs2 f r f cS 222 f rs2
p

2
f c

2s2D
3e2 f rs2p f c

2s2/41@2 f r
212a6f c

6s41 f r f c
2a2s

3~31 1
2 f rs12 f c

2a2s2!#e2 f rs2 f c
2a2/s2

. ~29!

f
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Figure 4 shows the predictions of Eqs.~28! and ~29! for the
spacing distribution obtained in@14# for the levels of the
Hénon-Heiles potential with reduced energies«50.108 and
0.166. We have used the NNS distributions to determine
best-fit values of the chaoticity parameter asf c50.64 in the
former case and 0.13 in the latter. These values have b
substituted into Eq.~29! to calculate the correspondin
NNNS distributions. As the figure shows, Eq.~29! is very
successful.

V. SUMMARY AND CONCLUSION

The study of the fluctuation properties of energy levels
the object of the random matrix theory. Short-range le
correlations are usually expressed in terms of the NNS
tribution p(0,s). This distribution practically vanishes fo
spacingss*3, even in the case of a regular spectrum. Lon
range level correlations are measured by other statistics.

FIG. 4. NNS and NNNS distributions for mixed systems calc
lated using Berry and Robnik’s method compared with the num
cal experiment by Engelet al. @14# on the Hénon-Heiles potential
with reduced energy«.
r,
e

en

s
l

s-

-
he

most popular among those is the spectral rigidityD3(L),
which measures the mean-square deviation of the integr
level density from a straight line in an interval of lengthL
@2#. The analysis of spectra in terms of the spectral rigidity
effective in the domain ofL*10. The gap in information
concerning the intermediate spacing can be filled by study
the higher-order spacing distributionsp(n,s), with n>1. In
Ref. @13#, we propose a generalization of the Wigner surm
that describes the spacing distributions of any order fo
chaotic system. The present paper considers the spacing
tributionsp(n,s) for systems with mixed regular-chaotic dy
namics. We apply methods similar to those, which have b
used to derive the Brody and Berry-Robnik formulas for t
NNS distribution for the levels of a mixed system. Th
former method has already been applied by Engelet al. @14#,
and we propose here a slight modification of that wo
These authors took the power of level repulsion of each or
as a fitting parameter, but we did not. We used instead
relation ~11! between the level-repulsion exponents. Our
sults agree with theirs to within 7%. We then obtained
general expression forp(n,s), which describes the case i
which the spectrum consists of a superposition of indep
dent sequences. This applies when a good quantum num
is ignored in the spectral analysis of a chaotic system. T
expression is used to obtain a generalization of the Be
Robnik formula for the NNNS distribution, which succes
fully describes mixed systems in the deep semiclassical
gime. The obtained formula is tested successfully
following the transition from regularity to chaos of the m
tion of a particle in the He´non-Heiles potential, which con
firms the validity of the principle of uniform semiclassic
condensation for high-order spacing distributions. This fin
ing agrees with the recent results obtained by Prosen
Robnik @17# concerning thenth-order gap functionE(n,s),
which also confirms the validity of the Berry-Robnik pictu
for high-order spacing distributions.

We have also shown that when the tuning parameter
describes the degree of disorder is varied starting from
value that implies full chaos, the NNNS distributionp(1,s)
departs from the Wigner-like shape slower than the co
sponding deviation of the NNS distributionp(0,s), while
both distributions ultimately reach the Poissonian limit wh
the system becomes fully regular. This finding suggests
ing both distributions simultaneously in the analysis of lev
statistics of a mixed system. We expectp(0,s) to give an
accurate measure of the chaoticity parameter when the
tem is in its early stages of transition from regularity
chaos, whilep(1,s) is expected to be more useful in the lat
stages.
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