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High-order level-spacing distributions for mixed systems
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We apply some of the methods that have been successfully used to describe the nearest-neighbor-spacing
distributions of levels of systems with mixed regular-chaotic dynamics to the calculation of high-order spacing
distributions. The distributions for chaotic spectra are described in terms of a previously suggested generali-
zation of Wigner's surmise, which assumes that the high-order level repulsion function is given by a product
of the zero-order ones and that all of the spacing distributions are nearly Gaussian functions at large spacings.
We compare the expressions obtained by the different methods for the next-nearest-neighbor spacing distribu-
tion with the outcome of a recently published numerical experiment on systems in transition between order and
chaos. We show that the evolution of the shape of that distribution during the transition of the system from a
chaotic to a regular regime is slower than the corresponding transition for the nearest-neighbor spacing
distribution.

PACS numbds): 05.45.-a

[. INTRODUCTION repulsion functiorr (n,s). They obtained a generalization of
Brody's formula for the level spacing distribution of mixed
The random matrix theorjyl,2] is a natural framework for systems by taking(n,s)«s%, and takingqg, as a free pa-
describing the levels of quantum systems whose classicaameter. For a GOE, whemg0,s)«s, this approach yields
counterparts have chaotic dynamics. The theory suggests thatigner’'s formula for the NNS distribution. In Rf13], we
the spacing distribution of levels of a chaotic system has apply this approach to evaluate théh-order spacing distri-
universal character that depends only on the symmetry progsutionsp(n,s) at small spacings by assuming that
erties of the system when the spectrum is renormalized to
make the mean spacing equal to 1. For example, the nearest- r(n,s)«[r(0s)]"**. (©)
neighbor-spacingNNS) distribution of the levels of a cha-
otic system behaves at small spacingR{s)=s when the The large-spacing dependence of the distributions is assumed
system is represented by a Gaussian orthogonal ensemlte be dominated by Gaussian functions. The overall depen-
(GOB). Because in these cases the Hamiltonian matrix elegence ons of the distributions obtained by combining the
ments are assumed to have a Gaussian distribution, one evo limits is found to agree with the exact results obtained in
pects the large-behavior of the NNS distribution to be also Mehta’s book[1] for the gap functionsE(n,s) when n
given by a Gaussian function. The two asymptotic conditions=0-7. In particular, the expressions obtained for the next-
are satisfied by the so-called Wigner surmise, nearest-neighbor-spacind\NNS) and the second-nearest-
neighbor-spacingsecond-NN$ distributions ard 13]

™ 2
Pu(s)= =se ™4 1
wS)=75 @ pw(ls) =Aste B’ A =283 B,=16/(97), (4)

On the other hand, the NNS distribution for regular systems;nq
is in most cases given by a Poisson distribution:

_ 2
PR(S):e_S. (2) pW(2,s)=A258e Bas s A2= Bg/4,
)
Systems whose classical dynamics is intermediate between B,=2"(7%5%3%m).
regularity and chaos have also been considered. RdBhik
was probably the first to show a continuous transition in aro see this, we expand expressi@n for py(1,s) in powers
deformed billiard from the Poisson to the Wigner distribu- of s and keep the leading two terms to obtgi,(1,s)

tion. Several expressions that interpolate between the twe 0.362 4%%—0.20508%+---, which agrees reasonably
distributions have been proposgt-12. Some of them will well with the power-series expansion py(1,s)
be discussed below. =0.36073%-0.23048%+--- obtained in[1]. Similarly, the

In a previous papefl3], we considered theth-order leading term in the power-series expansion of expres&pn
spacing distributionp(n,s) defined as the probability density for p,,(2,s), 5.9208<10 3s8, is consistent with the value
that the distances between two levels contains exactty 5.3790< 10 3s® obtained in[1] for the corresponding term.
levels. In this notationP(s)=p(0,s). We applied a statisti- The purpose of the present paper is to find expressions for
cal approach suggested by Engelal. [14] as a generaliza- the nth-order spacing distributions for mixed systems that
tion of a well-known work by Wignef15], which expresses interpolate between the corresponding distributions for the
the distributionsp(n,s) in terms of thenth-order level- regular systems, which have Poissonian forms,
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g" TABLE I. Mean valuesq and standard deviations, of the
pp(Nn,s)= ar e s, (6) chaoticity corresponding to the best-fit parametersntf-order
’ spacing distribution§14].

and for the chaotic systems that are described by a GOESystem Hydrogen atom ‘Hen-Heiles potential
which are obtained in Ref13]. In Sec. I, we apply assump- . 010 -0.35 0166 0133 0108
tion (3) to the generalization of Brody’s formula proposed in 0'77 O' 29 0'55 0. 27 0'091
the work of Engelet al. [14]. Section Il considers the case ' ' ' ' '

in which the spectrum can be described as a random super- a 0.09 0.002 0.09 0.01 0.009
position of a number of level sequences. We obtain explicit
expressions for the NNNS distribution when the constituting  p(n,s)=r(n,s)exg —R(n,s)]
sequences have equal densities and satisfy the GOE statis-
tics. This is the case for a chaotic system in which a symme-
try is unknown or ignored. We demonstrate the gradual tran-
sition of the shapes of these distributions towards the
Poissonian shape as the number of constituting sequences ©)

increases. This formalism is used in Sec. IV to obtain a gen\'/vhereR(n,s)=f3r(n,x)dx. They applied Eq(9) to obtain

eralization of the Berry-Robnik formula for the high-order i ; ]
level spacing distributions of mixed systems. The summargnzggﬁohrkﬁ]:{rw cL)j:Zef:) Irg\sgli-sr)e ball S[incr)(r)]pf?ﬁggoilpower law
and conclusion of the present work are given in Sec. V. P '

S
xf p(n—1x)exd R(n,x)]Jdx for n=1,
0

r(n,s)osdn, (10

IIl. THE STATISTICAL METHOD and consideringj, as a free parameter for each valuenof

Wigner [15] derived an interesting formula for the NNS  We shall now assume that theth-order level-repulsion
distribution using simple statistical arguments. The only in-function is related to the zeroth-order level-repulsion func-
put is the level-repulsion function(s), defined as the con- tion by means of the ansat3). Therefore, we shall not con-

ditional probability that, given a level at ener@y there is  Sider the exponents, as free parameters as dong 14], but
one level in the intervalisat a distance provided that there  Shall consider them to be related by
are no levels in the interv@E,E +s]. In terms of this func-

e el dr=(n+1)q, 1y

tion, the NNS distributiorP(s) has been expressed as
whereq(=qq) is the parameter used in E@) to define the
degree of chaoticity of the system. We then obtain the fol-
: (7)  lowing generalization of Brody’s formula:

P(s)=r(s)exp{— F r(x)dx
0

p(n,s) — ans(n+ 1)q exp( _ bns(n+ g+ 1)
The Wigner distribution(1) is obtained from Eq(7) by sub- S
stituting r (s)=s and the Poisson distributiof) by setting xf p(n—1x)expbxM*Yathdx (12
r(s)=1. Brody [4] interpolates between the Wigner and 0
Poisson distributions by takings)«s9, where 6<q<1. He

then uses Eq7) to obtain for n=1. Herea,=[(n+1)g+1]b, in order to have a unit

mean spacing, anll, is defined by the normalization condi-
tion fyp(n,s)ds=1.

pe(0s)=asTexp—bs?*h), a=(g+1)b, We shall now use the results of the numerical experiment
by Engelet al.[14] on the hydrogen atom in a magnetic field
and the Heon-Heiles potential to test the ansaf3).
They applied Eq.(9) to the spacing distributions witim
=0,1,...,7 forboth systems, taking, as a fitting param-
whereI[x] is the gamma function. Brody’s formul@) has eter as we have mentioned above. We use(Ed.to calcu-
been very successful in reproducing the NNS distributiondate the chaoticity parametgrthat corresponds to each of the
for various systems with mixed regular-chaotic dynamicseight values ofy, deduced i 14] for each state of the con-
Theoretical arguments explaining the fractional power-lawsidered systems. We then find the mean valaad standard
level repulsion are given by Prosen and RobfiK]. The  deviationo,, which correspond to each state. The results of
free parameteq serves as a purely phenomenological mea-calculation are given in Table I. In Fig. 1, we plot the ratio
sure for the degree of mixing between Poisson and GOIg,/(n+ 1) againsh for values ofg, reported by Engett al.
statistics. Engekt al. [14] pursued an analogous statistical for the hydrogen atom and Hen-Heiles potential at differ-
approach to determine the level-spacing distributions of thent effective energies. The figure indicate that the best-fit
nth neighbors for mixed systems. Their derivation is based/alues ofq,, agree with Eq(11), especially for the less cha-
on definingr(n,s)ds as the conditional probability that a otic systems. Table | shows that the ratio of the standard
new[ (n+1)th] level occurs in an intervalsat a distances  deviations of the values afj,, to the corresponding mean
from an arbitrarily chosen level provided that this distancevalues for the systems under consideration are in the range
contains exacthyn levels. They obtained from 16% to 1%, with a mean value of 7%. If we accept this

b={T'[(q+2)/(q+1)]}9*1, (8)
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FIG. 1. The ratios of the best-fit parametegsof the nth-order
spacing distributions obtained [ifh4] to the corresponding values of n=1
(n+1), shown as experimental points, compared to the mean val-
uesq indicated by the horizontal lines.

ratio as an estimate for the agreement between the proposed
power law and the analysis done by Engekl., we expect
Eq. (12) to reproduce experimental high-order spacing distri-
butions with a comparable accuracy. This accuracy is reason-
able as long as the data are presented in the form of histo-
grams. The agreement between the empirical valueg,of
and Eq.(11) is, in our point of view, a further justification
for the conclusion found if13] that the degree of level
repulsion is the major factor determining the spacing distri-
butions of sufficiently high ordem(~7) and thus defines the
correlation between the levels at distances several times ex-
ceeding the mean level spacing.

A generalization of the Brody formula for the NNNS dis-  FIG. 2. NNS and NNNS distributions for mixed systems
tribution can be derived by substituting E@®) for pg(0,s) calculated using Brody's method for different level-repulsion

p(l,s)

into Eg. (12) to obtain exponentsy.
s sis of the NNS and NNNS distributions can lead to an accu-
pB(l,s)zaalf s?Ix9ex —bxdt? rate determination of the power-repulsion exporgnt
0
— bl(sz‘”l—xzq*l)]dx_ (13 Ill. SUPERPOSITION OF INDEPENDENT SPECTRA

) . , This section considers the case of a composite spectrum
The parametes, is now equal to (3+1)b,, whileby(q) is  resyiting from a random superposition funcorrelated se-
obtained numerically from the normalization condition. Wequences of energy levels. This is the case when the system
can have an exact result onlylin the case of a regular systeflhs a set of good quantum numbers such as spin and parity,
whereb,(0)=1. In order to simplify the comparison with \yhich are not considered in the analysis of level statistics. In
numerical experiments, we calculated the valuebpfor  ¢,cn 4 system, the Hamiltonian assumes block-diagonal
different choices of] and parametrized the result in the form form, and the total spectrum consists of a mixture of contri-
butions from the individual subblock&]. The calculation of
the NNS distribution of such a mixed spectrum is described
as follows in Mehta’s bookl]. Let p; be the level density in
theith sequence anB;(x;) be the NNS distribution for this
Figure 2 demonstrates the behavior of the NNS and NNNSequence, withx;=f;s and fi=p;/Zp;. The probability
distributions for a system in a transition from regularity to Ei(x;) that there is no level belonging to thth sequence in
chaos. We see from the figure that, while the two distribu-a given interval of lengthx; is related to the corresponding
tions show a smooth transition, the speed of evolution aNNS distribution by
different ranges ofj is not the same. The modification intro-
duced in the shape of the NNNS distribution by varying _ - _ " *
from 0 to 0.33 is less than the corresponding modification of Bix) = J;i Fibgdx= fxi dXL Pily). 19
the NNS distribution, while both distributions ultimately
reach the Poisson limit ag=0. This finding suggests that Then the probability that a given interval of lengtldoes not
using the distribution$9) and(13) in a simultaneous analy- contain any of the levels of the mixed sequence is given by

bi(q)= 172,79+ 352 (14
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We can check the validity of this relation considering the
E(s)=H Ei(x). (16 case when each of the individual sequences has a Poisson
i=1 distribution (for each of the three functioris, F, andp) and
showing that the resultant mixed system also has a Poisson

Differentiating Eq.(16) twice, one obtains distribution[16,17]. This function is related to the probabil-

N P,(f;s) N Fi(f;s) 2 ity F(n,s) that there are exactly levels within a distance
P(s)=E f2 1! o from an arbitrary chosen level
®) (S)[Z:l ' Ei(fis) Z:l ' Ei(fis) y a
N
F.(f:5)]? dE(n,s)
_i21 f, Ef(ffs) ] (17) ——gs  —F(ns)—F(n-1s). (19)
= | I

In order to obtain a similar expression for théh-order ) ] o
spacing distribution, we consider the functi@{n,s) de- 1he latter is related to thath-order level spacing distribu-
fined as the probability that an interval of lengttof the  tion p(n,s) by
spectrum contains exactly levels. Because the individual

sequences are assumed to be independent, the probability dF(n,s)
that a given intervalk containsn levels of the mixed se- - =p(n,s)—p(n—1s). (20)
quences is given b16] ds
n N
E(n,s)= 2 Sntoroin H E(n x). (18 D|ffe_rent|at|ng _Eq.(18) twice, and using Eqg19) and(20),
ng,.ony=0 * N =T we finally obtain

dZE(n,S) . N i(ni,fis)+ i(ni—Z,fiS)—Z i(ni_l,fis)
—GZ S, 2 Ongeany, ”[E fzp : Ei(n;.fis) :

Fi(n;,fis)—F;(n;—1,f;s)
f Ei(n;,f;s)

Fi(n;,fis)—Fi(nj—1f;s) 2
" =1 Ei(n;,f;s)

-2

=1

}H Ei(n,,fs). (21

This equation is valid fom=2 but can be applied for the
lower values if one defings(j,s)=F(j,s)=0 for j<0. The pn(0,8)=
nth-order level spacing distribution can now be obtained

o2

+(N 1)Q(S)}

from Eq. (21) by using the following relation: 23
where
n 2/ . e2/aN2
_ ] d E(j ,S) e~ 7S /4N
p(n,S)—JZO(n—J+1)T, (22) Q(s)= (24)

=)

erfc| —

which can easily be obtained by combining E¢s9) and

(20). Similarly, we use Eqgs(21) and(22) to obtain the following
An interesting special case of spectrum partition is wherexpression for the NNNS distribution:

all the constituting sequences have GOE statistics. Such a

situation occurs in a chaotic system when a symmetry is \/— s\ [N 2a®s*

unknown or ignored18]. In this case, each of the constitut- N(ls)_ erfcl 5 N RS+ (N=1)Q(s)
ing sequences corresponds to a single eigenva@uset of

eigenvaluegscorresponding to the quantum num(seiof the

unconsidered symmetry. A similar situation occurs in sys- X{Ua(s)+Ua(s)} ), (25

tems whose degrees of freedom can be divided into two non-

interacting groups, one having chaotic dynamics and onghere
regular[18]. This model has been able to reproduce the spac-

ing distribution of low-lying levels of vibrational nucl§i9].

If all the N chaotic sequences have the same level density, Ui(s)
then each sequence will havé,=1/N and p;(n,s)

=pw(n,s) given by Eqgs.(4) and (5). In this case, Eq(17)

yields for the NNS distributiori18]

7S
= (N=2)Q(8)+ 5

252

N2 R(s)——T(s) 2}
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in the classical phase space where regular and irregular re-
gions coexist on the energy surface. The method rests on the
n=0 principle of uniform semiclassical condensati$g0,16,
which implies the semiclassical localization of the eigen-
functions either in the classical regular or classical irregular

Poisson
— Nl regions. The sequences of levels associated with these re-
n No2 gions are assumed to be statistically independent, and their
(@) = — . . . . .
= N 21 fraction densitied; are determined by the invariant measure
Qo of the corresponding regions in classical phase space. The
NNS distribution is then given by E@17). The simplest and
most important case occurs when the levels can be divided
into two sequences, one for the regular motion and one for
. the chaotic with fractional level densitie and f.=1
\E\\,\ —f,, respectively. In this case, the gap function takes the
following simple form:
n=1
e N
E(0s)=e 'rerf chs . (27)

For the NNS distribution, Eq(17) yields the following for-
mula[5]:

p(1,s)

per(0,5)=f2e~ " serfc(gfcs)

a
+|2 frfc+ EfﬁS) effrsfﬂ'f(z:szl{ (28)

which works well for systems in the deep semiclassical re-
gime[10].

High-order gap functions have recently been considered
by Prosen and RobnikL7]. They calculated th&(n,s) sta-
tistics with different values oh being as large as 100 for
three two-dimensional systems, namely the compactified
standard mag10] with kick parameters equal to 1.8 and
(26)  0.04, and for a quartic billiarf21]. The result of the numeri-

cal calculation agrees very well, particularly fo 20, with
— 022N the theoretical calculation based on the principle of uniform
e erfol as/N) . . . . . . .
R(s)= _ semiclassical condensation, which yields in this case an

( \/;s) ’ ( \/;s) ’ equation of the typ&18). Prosen and RobniKlL7] applied a

FIG. 3. NNS and NNNS distributions for spectra composed of
random superpositions & independent sequences.

3
Up(s)=2 +5R(8)+T(s)=Q(s)],

2 2.2
W( N?

erfc] —— erfc] —— Poisson distribution foE ¢g,a(Nn,s) for the regular compo-
nents of the spectra. For the chaotic components, they used
the numerical values given in Mehta's bodKk] for
Echaoiid N,S) when n<7 and the asymptotic formula sug-
gested by Aurictet al.[22]. This agreement can be regarded
as a confirmation of the Berry-Robnik picture for tBén,s)

and a=4/3\/7. A similar though more complicated expres-
sion has been obtained for the second-NNS distribution.
Figure 3 shows the NNS and NNNS distributions calcu-
lated by means of Eq$23) and(25) for spectra consisting of -
N sequences, witiN=1, 2, 4, andw«. The latter two are statistics. P o
evidentl Poiésonians :Althou' h bot.h the NNS and NNNS For the NNNS distribution, we propose a generalization
vidently . : 9 . L . ~of the Berry-Robnik expression by our generalization of the
distributions ultimately reach the Poisson limit, the evolution

of fche NNNS distribut_ion .from the Wig.ner-type.tha'g charac- x\t/;gsr,] et;t;:r:‘r;lrsé[(ln’o”]s,)flv\k}\l/(;h sigt:s?tietitzeggg]l})/, v(v;la)lyl ;V:: (g/)le
terizes the cases =1 is slower. This evolution is even into Egs.(21) and(22) to obtain

smaller for the second-NNS distributiopg(2,s). This re- '

sult together with the conclusion of the preceding section

(Fig. 2 suggests that higher-order spacing distributions are pggr(1,s)=(2—f,s)
more sensitive to the variation of the strength of perturbation

f foerfq af.s)—f2 erfc(ﬁfcs)

in a nearly regular system than the NNS distribution, and is .
less sensitive in the end of the order-chaos transition. Xeffs—frfc( 2—-2f,s— Efﬁsz)
2
IV. THE BERRY-ROBNIK METHOD x e frs™ wfcszl4+[2 fr2+2a6f534+ frfiazs

Berry and RobniK5] proposed a semiclassical method for N 2 2 21 —f s f2a?ls?
calculating the NNS distribution for systems with dynamics X(3+3fs+2fias?) e e (29)
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most popular among those is the spectral rigidity(L),
which measures the mean-square deviation of the integrated

level density from a straight line in an interval of lendth
[2]. The analysis of spectra in terms of the spectral rigidity is
effective in the domain oL.=10. The gap in information
concerning the intermediate spacing can be filled by studying
the higher-order spacing distributiopgn,s), with n=1. In
1 Ref.[13], we propose a generalization of the Wigner surmise
that describes the spacing distributions of any order for a
chaotic system. The present paper considers the spacing dis-
tributionsp(n,s) for systems with mixed regular-chaotic dy-
namics. We apply methods similar to those, which have been
used to derive the Brody and Berry-Robnik formulas for the
NNS distribution for the levels of a mixed system. The
former method has already been applied by Ergeil. [14],
and we propose here a slight modification of that work.
These authors took the power of level repulsion of each order
- as a fitting parameter, but we did not. We used instead the
relation(11) between the level-repulsion exponents. Our re-
sults agree with theirs to within 7%. We then obtained a
general expression fqo(n,s), which describes the case in
which the spectrum consists of a superposition of indepen-
dent sequences. This applies when a good quantum number
is ignored in the spectral analysis of a chaotic system. This
expression is used to obtain a generalization of the Berry-
Robnik formula for the NNNS distribution, which success-
FIG. 4. NNS and NNNS distributions for mixed systems calcu-fully describes mixed systems in the deep semiclassical re-
lated using Berry and Robnik’'s method compared with the numerigime. The obtained formula is tested successfully by
cal experiment by Engedt al.[14] on the Hmon-Heiles potential  following the transition from regularity to chaos of the mo-
with reduced energy. tion of a particle in the Heon-Heiles potential, which con-
firms the validity of the principle of uniform semiclassical
i HOWS ¢ . condensation for high-order spacing distributions. This find-
spacing distribution obtained ifi4] for the levels of the jhg agrees with the recent results obtained by Prosen and
Henon-Heiles potential with redu_cec_i energies 0.108 a_nd Robnik [17] concerning thenth-order gap functiorE(n,s),
0.166. We have used the NNS distributions to determine thghich also confirms the validity of the Berry-Robnik picture
best-fit values of the chaoticity parameterfas-0.64 in the  for high-order spacing distributions.

former case and 0.13 in the latter. These values have been \we have also shown that when the tuning parameter that
substituted into Eq.(29) to calculate the corresponding gescribes the degree of disorder is varied starting from the
NNNS distributions. As the figure shows, E@9) is very  yaue that implies full chaos, the NNNS distributigii1,s)
successful. departs from the Wigner-like shape slower than the corre-
sponding deviation of the NNS distributiom(0,s), while
both distributions ultimately reach the Poissonian limit when
the system becomes fully regular. This finding suggests us-

The study of the fluctuation properties of energy levels ising both distributions simultaneously in the analysis of level
the object of the random matrix theory. Short-range levektatistics of a mixed system. We expqx0,s) to give an
correlations are usually expressed in terms of the NNS disaccurate measure of the chaoticity parameter when the sys-
tribution p(0,s). This distribution practically vanishes for tem is in its early stages of transition from regularity to
spacingss= 3, even in the case of a regular spectrum. Long-chaos, whilep(1,s) is expected to be more useful in the later
range level correlations are measured by other statistics. Trstages.

05 -

p(0,s)

0.0 1 1 T 1 1

0.5 |-

p(l,s)

0.0

Figure 4 shows the predictions of Eq28) and(29) for the

V. SUMMARY AND CONCLUSION
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